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Abstract

The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal devel-
opment of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman
flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s
function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nus-
selt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other
parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow through porous media is important in numerous
engineering applications including geothermal energy,
petroleum reservoirs, nuclear reactors, drying, and fuel
cells. Almost all of the natural porous media are associated
with such small porosity that the Darcy flow model is
applicable. However, for man-made porous media with
higher porosity, the Brinkman model predicts hydraulics
through such hyperporous media, as noted by Nield and
Bejan [1].

Because of the use of the so-called hyperporous media in
the cooling of electronic equipment, there has recently been
renewed interest in the problem of forced convection in a
porous medium channel. However, the literature on the
effects of viscous dissipation on thermal development is
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limited to work pertaining to parallel plate channel [2–5]
or circular tube [6–9]. In some of these articles the velocity
distribution is slug type while in others the boundary and
shear effects are included via a Brinkman term to form a
Brinkman–Brinkman problem. The term ‘Brinkman–
Brinkman’, proposed by Nield [10], refers to a problem
involving a saturated porous medium in which the momen-
tum transfer is modeled by a Brinkman equation [11], and
the thermal energy equation includes a viscous dissipation
term involving a Brinkman number [12]. The problem
becomes more complicated when one seeks analytical solu-
tions for a thermally developing Brinkman–Brinkman
problem through ducts of arbitrary cross-section. For
two-dimensional ducts, the complexity of the problems
become clearer when one observes that even fully devel-
oped solutions, with or without the effects of viscous dissi-
pation, are limited to the work reported in [13–16]. The
studies of the thermally developing forced convection heat
transfer in elliptical ducts in [17] and for ducts with rectan-
gular cross-sections [18] are without inclusion of the
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Nomenclature

A area (m2)
A matrix
a duct dimension, see Fig. 1
aij elements of matrix A

B matrix
Bm coefficients
b duct dimension, see Fig. 1
bij elements of matrix B

Br Brinkman number, leU2=½keðT 1 � T 2Þ�
cp constant pressure specific heat (J/kg K)
D matrix
Da Darcy number (K/a2)
Dh hydraulic diameter 4ab/(a+b) (m)
dmj elements of matrix D

E matrix with elements eij

eij elements of matrix E

fi; fj basis functions
G Green’s function
h heat transfer coefficient (W/m2 K)
�h average heat transfer coefficient (W/m2 K)
i, j indices
K permeability (m2)
ke effective thermal conductivity (W/m K)
M viscosity ratio, le=l
m, n indices
NuD local Nusselt number, hDh=ke
�NuD average Nusselt number, �hDh=ke

P matrix having elements pmi

Pe Péclet number, qcpUa=ke

Pr Prandtl number, lecp=ke

p pressure (Pa)

pmi elements of matrix P

ReD Reynolds number, qUDh=le

S volumetric heat source, Eq. (4b) (W/m3)
S* dimensionless heat source, Eq. (18b)
T temperature (K)
T1 temperature at x = 0 (K)
T2 wall temperature (K)
U average velocity (m/s)
u velocity (m/s)
�u dimensionless velocity, �lu=ða2op=oxÞ
û u=U
x axial coordinate (m)
�x ðx=aÞ=Pe
y, z coordinates (m)
�y;�z y=a and z=a

Greek symbols

h dimensionless temperature
km eigenvalues
l fluid viscosity (N s/m2)
le effective viscosity (N s/m2)
n dummy variable of integration
q fluid density (kg/m3)
w eigenfunction

Subscripts
b bulk
e effective
o unheated length
w wall
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viscous dissipation effects. In a recent work, Haji-Sheikh
et al. [19] have considered the effects of viscous dissipation
on heat transfer in the entrance region of ducts of arbitrary
cross-section with a special attention to the isosceles trian-
gular case.

Earlier work on the effects of viscous dissipation in
ducts, clear of solid material, is surveyed by Shah and Lon-
don [20] and for in porous media surveyed by Magyari
et al. [22]. This paper treats the more general case of ther-
mally developing forced convection in rectangular ducts
wherein the viscous dissipation is significant. The EWRM
in an extended form, as discussed in [19], is the selected
computational methodology. This study treats the case of
a duct of rectangular cross-section with walls held at a con-
stant and uniform temperature, i.e. the T boundary condi-
tion in the terminology of Shah and London [20], which is
appropriate when the thermal conductivity of the enclosing
walls is sufficiently high. Here, the Green’s function solu-
tion in [18] is modified mainly to account for the viscous
dissipation effects on the thermal development. For the
case of the Darcy flow model, the hydrodynamically devel-
oped velocity profile is that of slug flow, and the problem is
mathematically similar to a pure conduction [21], but this
paper considers the more complicated flow appropriate to
the Brinkman model.
2. Analysis

2.1. Fluid flow analysis

For a passage with a constant but arbitrarily shaped
cross-section, based on the ligament dimension, the Brink-
man momentum equation, is

le

o
2u

oy2
þ o

2u
oz2

� �
� l

K
u� op

ox
¼ 0: ð1Þ

By selecting �y ¼ y=a, �z ¼ z=a, and �u ¼ �lu=ða2op=oxÞ, the
dimensionless form of Eq. (1) becomes,

M
o2�u
o�y2
þ o2�u

o�z2

� �
� 1

Da
�uþ 1 ¼ 0; ð2Þ
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Fig. 1. Schematic of rectangular duct and the coordinated (a) cross-
section and (b) the boundary conditions.

K. Hooman et al. / International Journal of Heat and Mass Transfer 50 (2007) 3521–3533 3523
wherein M ¼ le=l and Da ¼ K=a2 is the Darcy number.
Moreover, le is the effective viscosity, l is the fluid viscos-
ity, K is the permeability, and a is an arbitrarily chosen
length scale in Fig. 1a. Although the exact series solution
to Eq. (2), subject to the boundary condition �u ¼ 0 at the
walls is known (see [14,16]), for convenience of subsequent
computations, the solution is obtained using the varia-
tional calculus. Therefore, by definition, the mean velocity
is

U ¼ 1

A

Z
A

udA ð3aÞ

and the normalized velocity is

û ¼ u
U
: ð3bÞ

It is worth noting that A in Eq. (3a) is the cross-sectional
area of the duct. The details related to the hydrodynamic
aspects of the problem and the exact series solutions are
in [14,16,18].
2.2. Heat transfer analysis

In this solution, the uniform inlet temperature T1

remains constant and the wall temperature is fixed at the
same temperature T1 for a distance xo. Then, at x ¼ xo,
the wall temperature changes to a constant and locally uni-
form temperature T2, see Fig. 1b. Throughout this calcula-
tion, the local thermal equilibrium assumption remains
valid. Under steady-state condition and when the thermo-
physical properties are independent of temperature, the
thermal energy equation for the fully developed and incom-
pressible flow through the porous passage is

o

oy
ke

oT
oy

� �
þ o

oz
ke

oT
oz

� �
þ Sðy; z; xÞ ¼ qcpu

oT
ox
; ð4aÞ

where

Sðy; zÞ ¼ lu2

K
þ le

ou
oy

� �2

þ ou
oz

� �2
" #

: ð4bÞ

Eq. (4a) is valid if the Péclet number is sufficiently large so
that the effects of axial conduction could be neglected.

To obtain the Green’s function, it is preferred to solve
Eq. (4a) in the absence of the frictional heating term. Once
the Green’s function is known, the Green’s function solu-
tion would include the contributions of the frictional heat-
ing and non-uniform wall temperature. Now, in the
absence of the source term, consider a temperature solution
of the following form

T ðy; z; xÞ ¼ Wðy; zÞe�k2x ð5Þ

and the substitution of T ðy; z; xÞ from Eq. (5) in (4a) yields

o
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� �
þ k2qcpuW ¼ 0: ð6Þ

The variational calculus requires the minimization of the
functional [19]

I ¼
Z
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when

W ¼
XN

j¼1

djfjðy; zÞ ð8Þ

and fjðy; zÞ functions, for j ¼ 1; 2; . . . ;N , are known as the
basis functions. When the walls of a rectangular duct are
located at y ¼ �a and z ¼ �b, as shown in Fig. 1a, the fol-
lowing basis functions are selected

fj ¼ ða2 � y2Þðb2 � z2Þy2ðmj�1Þz2ðnj�1Þ ð9Þ

using all combinations of mj ¼ 1; 2; . . . and nj ¼ 1; 2; . . . As
required by this solution method, each of these basis func-
tions vanishes at the wall.

The minimization of functional Iðd1; d2; . . . ; dN Þ requires
having

oI
odi
¼ 0 for i ¼ 1; 2; . . . ;N : ð10Þ
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This leads to the relation
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Z
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qcpufjfi

�
¼ 0 for i ¼ 1; 2; . . . ;N ; ð11Þ

that has the following matrix form,

ðAþ k2BÞ � d ¼ 0 ð12Þ

and wherein the matrices A and B have the members

aij ¼
Z

A
fiðy; zÞr � ½kerfjðy; zÞ�dA

¼ �
Z

A
kerfiðy; zÞ � rfjðy; zÞdA ð13aÞ

and

bij ¼
Z

A
qcpuðy; zÞfiðy; zÞfjðy; zÞdA: ð13bÞ

The matrices A and B are symmetric and the coefficients
ðd1; d2; . . . ; dNÞ in Eq. (8) are the members of a vector d.
These coefficients and the eigenvalues are obtainable from
the relation

ðB�1Aþ k2IÞd ¼ 0: ð14Þ

Once k2
m and dmj are known, the eigenfunction Wmðy; zÞ, as

defined in Eq. (8), becomes

Wmðy; zÞ ¼
XN

j¼1

dmjfjðy; zÞ ð15Þ

for each eigenvalue (km). The Green’s function solution in a
region whose boundary designated as C and it includes the
contribution of frictional heating, as presented in [2,21], is

T ðy; z;xÞ ¼ 1

qcp

Z x

n¼0

dn
Z
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Z 1

y0¼0

GSðy 0; z0;nÞdy 0dz0
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z0¼0

Z 1

y0¼0

qcpuðy0; z0ÞGðy; z;xjy 0; z0;0ÞT ðy 0; z0;0Þdy 0dz0
)
;

ð16aÞ

wherein the Green’s function G stands for

Gðy; z; xjy0; z0; nÞ ¼
XN

m¼1

XN

i¼1

pmifiðy0; z0Þ
" #

Wmðy; zÞe�k2
mðx�nÞ

ð16bÞ

and pmi are members of the matrix P ¼ ½ðD � BÞT��1. Fol-
lowing the determination of the Green’s function, the
dimensionless temperature h ¼ ðT � T 2Þ=ðT 1 � T 2Þ re-
places T in Eq. (16a) and its solution becomes obtainable.
Accordingly, when boundary conditions are homogeneous
the first term in Eq. (16a) vanishes and the temperature
solution takes the following form
hðy; z; xÞ ¼
Z �b

z¼0

Z 1

y¼0

uðy0; z0ÞGðy; z; xjy0; z0; 0Þdy 0 dz0

þ 1

qcp

Z x

n¼0

dn
Z �b

z¼0

Z 1

y¼0

GSðy 0; z0; nÞdy0 dz0: ð17Þ

The application of energy balance to a differential element
located at location x, leads toward the computation of the
Nusselt number. Using the dimensionless coordinates
defined earlier and after setting �x ¼ ðx=aÞ=Pe with
Pe ¼ qcpUa=ke, the local Nusselt number is

NuD ¼
Dh

2a

� �2

� dhbð�xÞ=d�x
hbð�xÞ

� �
þ Br

hbð�xÞ

� �
hS�i

� �
; ð18aÞ

where Br ¼ leU
2=½keðT 1 � T 2Þ� and the function S* in-

cludes the effect of frictional heating that, in the absence
of any other volumetric heat source, takes the following
form

S� ¼ û2

MDa
þ oû

o�y

� �2

þ oû
o�z

� �2

: ð18bÞ

Moreover, the angle brackets in Eq. (18a) denote an aver-
age taken over the duct cross-section as

hS�i ¼ 1

1� �b

Z �b

z¼0

Z 1

y¼0

û2

MDa
þ oû

o�y

� �2

þ oû
o�z

� �2
" #

d�y d�z:

ð19aÞ

Similarly, by definition, the bulk temperature is

hbð�xÞ ¼ hûhi: ð19bÞ

In the formulation of Eq. (19a), the viscous dissipation
model proposed by Al-Hadhrami et al. [23] is being used.
For details on the alternative viscous dissipation models
one may consult [22–32].

3. Solution procedure

As stated earlier, the velocity distribution is computed
using the variational calculus as presented in [19]. Once
the velocity field is known, the dimensionless thermal
energy equation

o
2h

o�y2
þ o

2h
o�z2
þ BrS� ¼ û

oh
o�x

ð20Þ

is to be solved subject to the boundary conditions as
depicted in Fig. 1b. The dimensionless temperature has a
unit value at x ¼ 0. At the wall hð�1;�z; �xÞ ¼ 1 and
hð�y;��b; �xÞ ¼ 1 when 0 6 x < xo while it maintains the
symmetry conditions about y ¼ 0 and z ¼ 0. Meanwhile,
at location x ¼ xo, the dimensionless wall temperature
suffers a change and assumes a zero value; that is,
hð�1;�z; �xÞ ¼ hð�y;��b; �xÞ ¼ 0.

For convenience of mathematical formulations, Eq. (20)
and its boundary conditions are decomposed into two dif-
ferent partial differential equations. Accordingly, one can
set
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hð�y;�z; �xÞ ¼ hwð�y;�z; �xÞ þ hsð�y;�z; �xÞ ð21Þ
in which the first solution hwð�y;�z; �xÞ must satisfy the follow-
ing partial differential equation

o
2hw

o�y2
þ o

2hw

o�z2
¼ û

ohw

o�x
; ð22Þ

subject to conditions hwð�y;�z; 0Þ ¼ 1, hwð�1;�z; �xÞ ¼ hwð�y;
��b; �xÞ ¼ 1 when 0 6 �x < �xo while hwð1;�z; �xÞ ¼ hwð�y; �b; �xÞ ¼
0 when �x P 0, and the condition of symmetry at �y ¼ 0
and �z ¼ 0. Next, the second solution hsð�y;�z; �xÞ must satisfy
the following partial differential equation

o
2hs

o�y2
þ o

2hs

o�z2
þ BrS� ¼ û

ohs

o�x
; ð23Þ

with boundary conditions hsð�y;�z; 0Þ ¼ hsð1;�z; �xÞ ¼
hsð�y; �b; �xÞ ¼ 0, and the condition of symmetry at �y ¼ 0
and �z ¼ 0.

Based on the specified boundary conditions, hwð�y;�z; �xÞ ¼
1 is the solution when �x 6 �xo. The Green’s function solu-
tion for hwð�y;�z; �xÞ, when �x > �xo, is

hwð�y;�z; �xÞ ¼
Z �b

z0¼0

Z 1

y0¼0

ûðy0; z0Þ
XN

m¼1

XN

i¼1

pmifiðy0; z0Þ
" #

�Wmð�y;�zÞe�k2
mð�x��xoÞdy0 dz0 ð24Þ

and the Nusselt number is being defined as

NuD;w ¼ �
1

4hb;w

dhb;w

d�x
: ð25Þ

Moreover, the Green’s function solution for hsð�y;�z; �xÞ is

hsð�y;�z; �xÞ ¼ Br
Z �x

n¼0

dn
Z �b

z0¼0

Z 1

y0¼0

XN

m¼1

XN

i¼1

pmifiðy0; z0Þ
" #

�Wmð�y;�zÞe�k2
mð�x�nÞS�ðy0; z0; nÞdy0 dz0: ð26Þ

For this case the Nusselt number is defined as

NuD;s ¼
Dh

2a

� �2 hS�i � dðhb;s=BrÞ=d�x
hb;s=Br

: ð27Þ

In this formulation, the dimensionless temperature is
decomposed into these two contributions and this is done
for some physical reason as well as the mathematical ones.
These two solutions have interesting physical interpreta-
tion. The first solution called hwð�y;�z; �xÞ does not include
the frictional heating effects. It can be interpreted as a
problem for which the fluid enters the duct at a tempera-
ture the same as that of the walls, and then, at a distance
xo away from entrance location, the wall temperature
abruptly changes. For this case, the results for x P xo are
similar to those in [18].

The second solution simulates a problem for which the
wall temperatures remain at a constant value and the fluid
enters the duct at a temperature equal to temperature at the
walls. The main reason for transfer of heat to the walls is
the internal heating induced by viscous dissipation.
Accordingly, the temperature in the absence of a wall tem-
perature change, when hwð�y;�z; �xÞ ¼ 0 in Eq. (21), or when
0 6 �x < �xo is obtainable from the relation

T � T 2

T 1 � T 2

¼ 1þ hsð�y;�z : �xÞ

¼ 1þ leU
2

keðT 1 � T 2Þ
hsð�y;�z : �xÞ

Br

� �
; ð28aÞ

that reduces to

T ¼ T 1 þ
leU

2

ke

hsð�y;�z : �xÞ
Br

� �
; ð28bÞ

without direct effect of any arbitrarily selected T2. Tables
1–4 are prepared to provide the developing region bulk
temperature hhsð�y;�z : �xÞi=Br, related to the term within
square brackets, for the aspect ratios b=a ¼1, 2, 4, and 10
while MDa is being a parameter. These tables also include
the corresponding value of NuD,s for the same variables.
For completeness, the dimensionless bulk temperature
hwð�y;�z : �xÞ and the Nusselt number NuD,w due to the wall
effects are included in the following columns. This permits
the determination of the combined effect using the relation

NuDð�xÞ ¼
NuD;wð�x� �xoÞhb;wð�x� �xoÞ þ hb;sð�xÞNuD;sð�xÞ

hb;wð�x� �xoÞ þ hb;sð�xÞ
ð29Þ

for a broad range of parameters when �x > �xo. The quantity
NuD;sð�xÞ is directly obtainable from data appearing in
Tables 1–4; however, in order to get the hb;sð�xÞ value, one
should multiply Br by the quantity hb;sð�xÞ=Br. If the wall
temperature T2 appears at �xo ¼ 0, these tables directly pro-
vide the quantities hb;wð�xÞ and NuD;wð�xÞ, in Eq. (29); how-
ever, when �xo > 0, the tabulated data for �x stand for
those for ð�x� �xoÞ. Additionally, the numerator of Eq.
(29) represents the dimensionless local wall heat flux enter-
ing the medium,

½qwð�xÞ�inDh

keðT 2 � T 1Þ
¼ NuD;wð�x� �xoÞhb;wð�x� �xoÞ þ hb;sð�xÞNuD;sð�xÞ

¼ Dh

2a

� �2

� dhb

d�x
þ BrhS�i

� �
; ð30Þ

whose integration would yield the total heat flux within any
�x increment.

As an illustration, for b=a ¼4, MDa = 0.01, and �xo

being sufficiently large, Table 3b gives NuD;s ¼ 7:59 and
hb;s=Br ¼ 38:39, Eq. (29) yields the Nusselt number

NuDð�x� �xoÞ ¼
NuD;wð�x� �xoÞhb;wð�x� �xoÞ þ 38:39� 7:59Br

hb;wð�x� �xoÞ þ 38:39Br
:

ð31Þ

This considers the first column in Table 3b to be ð�x� �xoÞ.
For different aspect ratios, Tables 1–4 include a sum-

mary of the data, acquired for individual contributions,
as a function of �x for different values of the parameter
MDa. Also, data are plotted in Figs. 2–4 mainly to illus-
trate the general behavior of these data. The results for
the combined effects are plotted in Figs. 5–8. The data in



Table 1
The bulk temperatures and the Nusselt numbers when b=a ¼ 1, for (a) MDa =1 and 1, (b) MDa = 0.1 and 0.01, and (c) MDa = 0.001 and 0.0001

x=a
Pe

MDa =1 MDa = 1

hb;w NuD;w hb;s=Br NuD;s hb;w NuD;w hb;s=Br NuD;s

Panel a

0.0001 0.9949 32.29 0.0006 1263 0.9948 33.54 0.0008 1136
0.0002 0.9921 26.43 0.0013 790.9 0.9919 25.96 0.0015 710.3
0.0005 0.9855 19.19 0.0030 437.9 0.9853 19.72 0.0037 384.4
0.001 0.9773 15.01 0.0059 279.7 0.9769 15.31 0.0071 245.2
0.002 0.9645 11.83 0.0111 179.5 0.9639 12.00 0.0137 155.9
0.005 0.9363 8.596 0.0255 100.9 0.9353 8.733 0.0317 86.42
0.01 0.9016 6.781 0.0468 65.91 0.9001 6.886 0.0589 55.73
0.02 0.8494 5.389 0.0840 43.55 0.8471 5.469 0.1075 36.33
0.05 0.7401 4.077 0.1736 25.82 0.7367 4.134 0.2289 21.16
0.1 0.6153 3.430 0.2872 17.85 0.6110 3.477 0.3889 14.50
0.2 0.4465 3.077 0.4504 12.79 0.4414 3.119 0.6254 10.40
0.5 0.1815 2.979 0.7135 9.214 0.1772 3.020 1.0102 7.620
1 0.0410 2.978 0.8537 8.190 0.0392 3.019 1.2126 6.852
2 0.0021 2.978 0.8925 7.964 1.91E�03 3.019 1.2673 6.687
5 2.75E�07 2.978 0.8945 7.952 2.23E�07 3.019 1.2701 6.679
1 0 2.978 0.8945 7.952 0 3.019 1.2701 6.679

MDa = 0.1 MDa = 0.01

Panel b

0.0001 0.9942 36.55 0.0019 725.2 0.9924 50.28 0.0119 395.4
0.0002 0.9910 29.39 0.0038 443.4 0.9882 37.63 0.0237 243.0
0.0005 0.9836 21.79 0.0092 236.4 0.9788 28.09 0.0586 125.7
0.001 0.9744 16.89 0.0181 146.9 0.9668 21.94 0.1160 78.29
0.002 0.9600 13.29 0.0353 91.15 0.9486 16.99 0.2288 49.64
0.005 0.9287 9.621 0.0847 48.97 0.9092 12.23 0.5566 28.46
0.01 0.8903 7.569 0.1625 31.01 0.8620 9.539 1.0788 19.57
0.02 0.8330 5.996 0.3078 20.06 0.7929 7.492 2.0572 14.05
0.05 0.7149 4.517 0.6940 11.91 0.6559 5.579 4.6266 9.663
0.1 0.5828 3.792 1.2305 8.527 0.5101 4.653 8.0839 7.657
0.2 0.4088 3.404 2.0434 6.554 0.3301 4.184 13.029 6.401
0.5 0.1508 3.304 3.3300 5.309 0.0964 4.083 19.859 5.612
1 0.0289 3.303 3.9428 4.997 0.0125 4.082 22.328 5.443
2 1.06E�03 3.303 4.0828 4.939 2.11E�04 4.082 22.691 5.421
5 5.28E�08 3.303 4.0882 4.937 1.02E�09 4.082 22.697 5.421
1 0 3.303 4.0882 4.937 0 4.082 22.698 5.421

MDa = 0.001 MDa = 0.0001

Panel c

0.0001 0.9896 71.12 0.1048 224.7 0.9868 89.10 1.0102 154.3
0.0002 0.9836 53.27 0.2087 146.3 0.9790 69.54 2.0115 115.8
0.0005 0.9711 36.74 0.5172 83.85 0.9630 45.71 4.9788 78.94
0.001 0.9555 28.81 1.0247 57.09 0.9444 34.33 9.8382 58.89
0.002 0.9321 21.96 2.0201 40.46 0.9172 25.49 19.324 44.19
0.005 0.8833 15.27 4.8941 26.81 0.8632 16.87 46.506 30.14
0.01 0.8272 11.59 9.4153 20.11 0.8036 12.46 88.937 22.58
0.02 0.7485 8.857 17.746 15.32 0.7226 9.34 166.55 17.02
0.05 0.6005 6.391 39.023 10.97 0.5740 6.647 362.94 11.99
0.1 0.4514 5.258 66.659 8.794 0.4267 5.457 615.26 9.514
0.2 0.2761 4.729 104.42 7.398 0.2561 4.923 954.96 7.954
0.5 0.0685 4.632 151.84 6.542 0.0598 4.834 1367.5 7.020
1 6.75E�03 4.632 166.01 6.379 5.33E�03 4.834 1482.5 6.850
2 6.58E�05 4.632 167.54 6.363 4.24E�05 4.834 1493.7 6.835
5 6.07E�11 4.632 167.56 6.363 2.14E�11 4.834 1493.8 6.835
1 0 4.632 167.61 6.361 0 4.830 1504.0 6.802
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these figures are the developing Nusselt number for differ-
ent values of the aspect ratio, the Darcy number, and the
Brinkman number. A detailed discussion concerning the
behavior of these acquired tabulated data and graphical
information is in the next section.
4. Results and discussion

The investigation of the frictional heating in the absence
of a wall temperature change can be interesting, by its own.
Fig. 2 shows the dimensionless bulk temperature hb;sð�xÞ=Br



Table 2
The bulk temperatures and the Nusselt numbers when b=a ¼ 2, for (a) MDa =1 and 1, (b) MDa = 0.1 and 0.01, and (c) MDa = 0.001 and 0.0001

x=a
Pe

MDa =1 MDa = 1

hb;w NuD;w hb;s=Br NuD;s hb;w NuD;w hb;s=Br NuD;s

Panel a

0.0001 0.9964 42.07 0.0004 1942 0.9963 43.16 0.0005 1626
0.0002 0.9943 33.56 0.0008 1233 0.9942 34.50 0.0010 1027
0.0005 0.9897 24.03 0.0019 682.2 0.9894 24.66 0.0025 563.5
0.001 0.9838 19.10 0.0037 433.6 0.9834 19.57 0.0049 354.8
0.002 0.9746 15.08 0.0070 278.1 0.9739 15.47 0.0095 224.8
0.005 0.9541 10.97 0.0163 155.6 0.9529 11.23 0.0224 123.6
0.01 0.9285 8.676 0.0302 101.1 0.9268 8.880 0.0423 78.92
0.02 0.8894 6.896 0.0550 66.22 0.8869 7.053 0.0786 50.77
0.05 0.8057 5.195 0.1166 38.50 0.8016 5.309 0.1730 28.83
0.1 0.7063 4.325 0.1985 25.97 0.7007 4.418 0.3046 19.22
0.2 0.5640 3.788 0.3250 17.91 0.5568 3.873 0.5156 13.27
0.5 0.3079 3.483 0.5661 11.91 0.2997 3.567 0.9257 9.062
1 0.1173 3.405 0.7511 9.830 0.1115 3.489 1.2382 7.666
2 0.0174 3.393 0.8489 9.090 0.0158 3.476 1.3989 7.185
5 5.7E�05 3.392 0.8659 8.978 4.5E�05 3.476 1.4253 7.117
1 0 3.392 0.8659 8.978 0 3.476 1.4254 7.116

MDa = 0.1 MDa = 0.01

Panel b

0.0001 0.9958 49.08 0.0016 941.6 0.9944 64.89 0.0114 512.6
0.0002 0.9934 39.45 0.0032 583.6 0.9912 51.31 0.0227 313.5
0.0005 0.9879 28.25 0.0079 313.0 0.9840 37.85 0.0564 165.3
0.001 0.9811 22.09 0.0156 192.7 0.9750 28.97 0.1118 103.3
0.002 0.9704 17.55 0.0307 118.8 0.9613 22.58 0.2212 65.21
0.005 0.9467 12.69 0.0744 63.39 0.9312 16.32 0.5420 37.33
0.01 0.9175 9.998 0.1443 39.86 0.8947 12.67 1.0587 25.64
0.02 0.8733 7.914 0.2774 25.60 0.8407 9.905 2.0433 18.35
0.05 0.7798 5.929 0.6428 15.02 0.7307 7.279 4.7192 12.52
0.1 0.6712 4.922 1.1762 10.63 0.6087 5.963 8.5319 9.789
0.2 0.5195 4.322 2.0493 8.034 0.4469 5.202 14.522 8.011
0.5 0.2595 4.008 3.7083 6.279 0.1937 4.835 24.916 6.743
1 0.0853 3.930 4.8690 5.726 0.0505 4.754 31.029 6.358
2 0.0094 3.917 5.3801 5.554 0.0035 4.743 33.053 6.259
5 1.3E�05 3.917 5.4435 5.535 1.2E�06 4.743 33.203 6.252
1 0 3.917 5.4436 5.535 0 4.743 33.205 6.252

MDa = 0.001 MDa = 0.0001

Panel c

0.0001 0.9922 87.03 0.1035 295.3 0.9902 105.0 1.0088 181.5
0.0002 0.9879 69.16 0.2065 188.9 0.9849 85.74 2.0127 137.8
0.0005 0.9784 50.01 0.5131 109.4 0.9732 60.23 4.9978 97.45
0.001 0.9665 38.59 1.0188 75.38 0.9592 45.55 9.9079 74.70
0.002 0.9487 29.03 2.0157 53.54 0.9386 33.47 19.550 56.82
0.005 0.9115 20.25 4.9217 35.39 0.8973 22.28 47.509 39.04
0.01 0.8680 15.28 9.5611 26.46 0.8510 16.37 91.891 29.28
0.02 0.8063 11.57 18.293 20.02 0.7871 12.12 174.99 21.98
0.05 0.6868 8.200 41.570 14.13 0.6664 8.462 395.16 15.26
0.1 0.5602 6.592 73.979 11.12 0.5404 6.775 699.73 11.87
0.2 0.3987 5.713 123.52 9.089 0.3810 5.875 1161.7 9.631
0.5 0.1591 5.316 205.08 7.650 0.1480 5.477 1909.8 8.065
1 0.0362 5.236 248.51 7.234 0.0322 5.400 2295.1 7.623
2 0.0019 5.228 260.73 7.140 0.0016 5.392 2397.8 7.528
5 2.8E�07 5.228 261.41 7.135 1.7E�07 5.392 2403.0 7.523
1 0 5.227 261.81 7.127 0 5.392 2426.2 7.473
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plotted when b=a ¼ 1, for different MDa parameters. This
figure illustrates the dimensionless bulk temperature due to
the frictional heating in the thermally developing region
within a square channel. One can observe that increasing
MDa decreases the dimensionless bulk temperature. For
the same aspect ratio and MDa parameters, the Nusselt
number NuD,s is presented in Fig. 3. As can be seen from
Eq. (27), NuD,s does not depend on Br, in the developing



Table 3
The bulk temperatures and the Nusselt numbers when b=a ¼ 4, for (a) MDa =1 and 1, (b) MDa = 0.1 and 0.01, and (c) MDa = 0.001 and 0.0001

x=a
Pe

MDa =1 MDa = 1

hb;w NuD;w hb;s=Br NuD;s hb;w NuD;w hb;s=Br NuD;s

Panel a

0.0001 0.9970 50.25 0.0003 2703 0.9969 49.12 0.0005 2215
0.0002 0.9953 40.73 0.0006 1719 0.9952 41.04 0.0009 1371
0.0005 0.9913 29.64 0.0016 951.6 0.9911 30.55 0.0022 749.9
0.001 0.9863 23.40 0.003 608.2 0.9860 24.03 0.0042 475.6
0.002 0.9784 18.35 0.0058 390.7 0.9779 18.82 0.0082 301.9
0.005 0.9609 13.53 0.0134 218.3 0.9600 13.84 0.0193 165.2
0.01 0.9388 10.78 0.0248 141.6 0.9373 11.03 0.0366 105.2
0.02 0.9044 8.628 0.0453 92.59 0.9023 8.818 0.0683 67.36
0.05 0.8294 6.596 0.0965 53.42 0.8259 6.732 0.1519 37.89
0.1 0.7378 5.574 0.1657 35.61 0.7330 5.687 0.2705 24.99
0.2 0.6019 4.989 0.2753 24.11 0.5954 5.094 0.4652 17.04
0.5 0.3433 4.687 0.4942 15.63 0.3353 4.799 0.8593 11.50
1 0.1394 4.563 0.6725 12.72 0.1331 4.681 1.1768 9.677
2 0.0239 4.481 0.7756 11.63 0.0218 4.603 1.3554 9.013
5 1.3E�04 4.442 0.7971 11.44 1.0E�04 4.566 1.3907 8.901
1 0 4.441 0.7973 11.43 0 4.564 1.3908 8.901

MDa = 0.1 MDa = 0.01

Panel b

0.0001 0.9964 54.81 0.0015 1209 0.9949 72.91 0.0112 653.2
0.0002 0.9945 45.51 0.0030 726.6 0.9925 57.24 0.0222 389.0
0.0005 0.9899 34.60 0.0074 382.2 0.9867 44.38 0.0552 198.0
0.001 0.9841 27.33 0.0146 236.8 0.9792 35.46 0.1098 122.8
0.002 0.9749 21.40 0.0288 146.9 0.9674 27.78 0.2177 78.18
0.005 0.9548 15.50 0.0701 78.15 0.9417 19.76 0.5349 45.06
0.01 0.9296 12.33 0.1366 48.99 0.9105 15.41 1.0486 30.94
0.02 0.8909 9.821 0.2640 31.43 0.8637 12.12 2.0348 22.16
0.05 0.8077 7.434 0.6179 18.44 0.7665 8.951 4.7546 15.14
0.1 0.7082 6.251 1.1432 13.07 0.6553 7.392 8.7185 11.86
0.2 0.5637 5.594 2.0224 9.923 0.5013 6.542 15.153 9.728
0.5 0.2995 5.297 3.7647 7.826 0.2396 6.182 27.062 8.225
1 0.1078 5.187 5.0722 7.157 0.0727 6.058 34.909 7.752
2 0.0145 5.116 5.7201 6.930 0.0069 5.982 38.049 7.609
5 3.7E�05 5.081 5.8212 6.899 6.4E�06 5.949 38.383 7.595
1 0 5.080 5.8215 6.898 0 5.947 38.386 7.594

MDa = 0.001 MDa = 0.0001

Panel c

0.0001 0.9931 100.7 0.1009 363.7 0.9912 129.9 0.952 243.1
0.0002 0.9897 77.41 0.2033 227.2 0.9868 99.12 1.955 174.9
0.0005 0.9821 58.33 0.5091 128.4 0.9776 69.33 4.945 117.1
0.001 0.9723 46.08 1.014 88.50 0.9661 53.72 9.875 88.51
0.002 0.9572 35.39 2.013 63.43 0.9489 40.16 19.59 67.28
0.005 0.9255 24.37 4.936 42.32 0.9140 26.64 47.92 46.39
0.01 0.8885 18.45 9.635 31.67 0.8747 19.65 93.26 34.8.0
0.02 0.8350 14.03 18.57 24.00 0.8193 14.66 179.1 26.16
0.05 0.7294 9.969 42.82 16.93 0.7123 10.25 411.0 18.17
0.1 0.6138 8.069 77.53 13.31 0.5969 8.259 741.3 14.12
0.2 0.4589 7.085 132.7 10.88 0.4432 7.253 1264 11.45
0.5 0.2064 6.691 231.0 9.161 0.1955 6.857 2182 9.579
1 0.0567 6.558 291.1 8.637 0.0520 6.723 2731 9.019
2 0.0045 6.480 312.4 8.493 0.0038 6.644 2918 8.869
5 2.3E�06 6.449 314.3 8.481 1.6E�06 6.615 2933 8.858
1 0 6.443 315.1 8.465 0 6.608 2953 8.815
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region. However, MDa = 0.1 serves as a threshold value
beyond which NuD,s increases as MDa increases and it
decreases as �x increases. For the smaller values of MDa,
one observes intersections at some stream-wise locations
in such a way that NuD,s increases with a decrease in
MDa within and near the thermally fully developed region.
Also, it is to be noted that the curves for MDa = 1 and
MDa =1 are very close to each other and act in a similar



Table 4
The bulk temperatures and the Nusselt numbers when b=a ¼ 10, for (a) MDa =1 and 1, (b) MDa = 0.1 and 0.01, and (c) MDa = 0.001 and 0.0001

x=a
Pe

MDa =1 MDa = 1

hb;w NuD;w hb;s=Br NuD;s hb;w NuD;w hb;s=Br NuD;s

Panel a

0.0001 0.9970 55.09 0.0003 3621 0.9969 56.12 0.0004 2865
0.0002 0.9955 45.36 0.0006 2255 0.9954 46.21 0.0008 1766
0.0005 0.9921 33.54 0.0014 1233 0.9919 34.21 0.002 952.4
0.001 0.9876 26.89 0.003 781.9 0.9873 27.40 0.004 596.7
0.002 0.9805 21.58 0.005 499.7 0.9801 22.00 0.008 375.9
0.005 0.9644 16.09 0.012 279.4 0.9637 16.40 0.018 205.5
0.01 0.9439 12.87 0.022 181.5 0.9427 13.12 0.034 130.9
0.02 0.9118 10.36 0.041 118.6 0.9102 10.55 0.063 83.73
0.05 0.8408 8.035 0.087 68.19 0.8381 8.159 0.141 46.90
0.1 0.7522 6.905 0.150 45.19 0.7486 7.006 0.253 30.79
0.2 0.6173 6.318 0.251 30.35 0.6126 6.410 0.438 20.92
0.5 0.3525 6.112 0.455 19.58 0.3468 6.207 0.816 14.16
1 0.1407 6.041 0.621 15.98 0.1364 6.141 1.120 11.99
2 0.0228 5.989 0.714 14.68 0.0215 6.092 1.287 11.23
3 0.0038 5.965 0.729 14.50 0.0034 6.070 1.314 11.12
4 6.2E�04 5.951 0.731 14.47 5.5E�04 6.057 1.318 11.11
5 1.0E�04 5.942 0.732 14.46 8.7E�05 6.048 1.319 11.10
1 0 5.908 0.732 14.46 0 6.016 1.319 11.10

MDa = 0.1 MDa = 0.01

Panel b

0.0001 0.9963 62.53 0.0015 1491 0.9947 84.63 0.011 749.9
0.0002 0.9946 51.14 0.0029 893.3 0.9925 64.89 0.022 449.6
0.0005 0.9907 38.25 0.0071 463.6 0.9875 49.21 0.055 228.6
0.001 0.9856 30.41 0.014 282.6 0.9811 38.92 0.109 140.8
0.002 0.9776 24.41 0.028 172.8 0.9710 30.76 0.216 88.70
0.005 0.9595 18.16 0.068 91.44 0.9484 22.64 0.531 50.89
0.01 0.9365 14.50 0.132 57.43 0.9203 17.89 1.044 35.16
0.02 0.9008 11.60 0.257 36.90 0.8776 14.12 2.032 25.36
0.05 0.8233 8.859 0.603 21.70 0.7877 10.49 4.778 17.44
0.1 0.7286 7.556 1.123 15.43 0.6828 8.754 8.828 13.72
0.2 0.5872 6.886 2.001 11.79 0.5329 7.873 15.51 11.33
0.5 0.3187 6.672 3.768 9.419 0.2655 7.600 28.25 9.688
1 0.1168 6.610 5.118 8.685 0.0847 7.530 37.02 9.185
2 0.0159 6.565 5.799 8.439 0.0088 7.480 40.72 9.033
5 4.2E�05 6.525 5.906 8.405 1.0E�05 7.437 41.15 9.016
1 0 6.495 5.907 8.405 0 7.399 41.15 9.016

MDa = 0.001 MDa = 0.0001

Panel c

0.0001 0.9932 117.7 0.133 303.1 0.9916 154.8 1.085 243.2
0.0002 0.9902 88.08 0.235 218.3 0.9876 115.5 2.089 189.3
0.0005 0.9836 64.67 0.541 134.5 0.9794 78.16 5.083 131.1
0.001 0.9752 50.49 1.046 95.13 0.9694 59.57 10.03 99.23
0.002 0.9624 38.97 2.047 68.95 0.9546 44.35 19.79 75.12
0.005 0.9347 27.63 4.987 46.69 0.9243 30.03 48.38 51.80
0.01 0.9015 21.15 9.734 35.41 0.8892 22.40 94.36 39.07
0.02 0.8531 16.14 18.80 27.08 0.8392 16.79 181.9 29.52
0.05 0.7559 11.57 43.69 19.25 0.7407 11.87 421.3 20.60
0.1 0.6467 9.477 79.86 15.21 0.6314 9.680 767.8 16.08
0.2 0.4953 8.444 138.5 12.51 0.4809 8.625 1327 13.11
0.5 0.2347 8.145 246.8 10.64 0.2242 8.327 2349 11.07
1 0.0689 8.070 316.9 10.08 0.0641 8.251 2997 10.47
2 0.0061 8.018 343.7 9.919 0.0053 8.198 3236 10.31
3 5.4E�04 7.995 346.0 9.906 4.5E�04 8.175 3256 10.29
4 4.8E�05 7.982 346.2 9.905 3.8E�05 8.161 3258 10.29
5 4.3E�06 7.973 346.3 9.905 3.2E�06 8.153 3258 10.29
1 0 7.931 347.0 9.890 0 8.151 3268 10.27
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Fig. 2. The bulk temperature due to the frictional heating in the thermally
developing region within a square channel.
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Fig. 3. The Nusselt number due to the frictional heating in the thermally
developing region within a square channel.
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manner in both Figs. 2 and 3. It is possible that this unique
NuD,s trend is a result of changes in the velocity distribu-
tion. Additionally, the MDa values of near 1 simulate
hyperporous media for those the boundary effects are pres-
ent even in the duct center. For small values of MDa, there
is a thin near wall region in which the velocity changes are
present and out of this region there exists the core region as
reported in [16].

Fig. 4 shows the variation of frictional heating induced
bulk temperature hb;sð�xÞ=Br as a function of MDa under
thermally fully developed condition for ducts with different
aspect ratios. One notes an intersection that occurs in
MDa ffi 1.5; beyond which, the dimensionless bulk temper-
ature decreases with the duct aspect ratio. However, for
smaller values of MDa the converse is true.

To illustrate the combined effects, Figs. 5–8 show the
Nusselt number in the developing region for some Br val-
ues. Each figure covers two distinct value of MDa = 10�4

and 1 where the latter simulates a hyperporous medium.
As a common trend in all of these figures, one observes that
the negative values of Br will lead to a jump in the Nusselt
number plots and this is similar to what previously
reported in the literature for parallel plate channel or circu-
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lar tubes. Another similar behavior is that NuD,s values
computed with both positive and negative Br will merge
to a single Nusselt number in the fully developed region
that is independent of the Brinkman number. A quick
check of these figures shows that, with non-zero Br values,
the fully developed Nusselt number is higher than the case
when there is no dissipation, regardless of the sign or the
value of Br.

It is interesting that for the limiting values of Br ¼ �1,
the Nusselt number plots are not different in the developing
region. However, the mathematical value of this limiting Br

changes with MDa in such a way that for MDa = 10�4

even Br = 1 is large enough to be almost indistinguishable
from that of Br ¼ �1 while when MDa = 1, the absolute
value of this limiting Br is higher than Br ¼ 10.

Comparing these figures for different aspect ratios, it is
found that, for a fixed MDa value, the stream-wise location
of the point where the jump occurs is nearly independent of
the cross-section geometry. This can be also verified by
comparing these data, for example, with those in [2,
Fig. 7] and in [9, Fig. 5]. It is also interesting to note that
the Br ¼ �10 with MDa = 1 leads to a jump at �x ffi 0:015
which is close to approximate values of 0.015 and 0.03
reported in [9,2], respectively. This fact drives home the
point that the jump location is almost independent of the
duct cross-section. Another point worthy of noting is that
increasing MDa and the aspect ratio as well as decreasing
Br will increase the thermal entry length.

Fig. 9 shows the variation of the fully developed Nusselt
number as a function of MDa for ducts with different
aspect ratios. Regardless of the b/a value, the maximum
NuD,s is associated with the highest MDa value and the
minimum NuD,s occurs at MDa ffi 0:1. As MDa approaches
zero the data asymptotically approach those of slug flow,
as shown in Fig. 9. Then, the Nusselt number begins to
reduce, going through a minimum, shows a relatively large
increase, and asymptotically approaches the Nusselt num-
ber for clear fluid through the same passage. As the aspect
ratio plunges the difference between the Nusselt numbers
for the clear fluid and that of the slug flow decreases. This
minimum point, already highlighted in Fig. 3 as a threshold
value, if arranged as 3

ffiffiffiffiffiffiffiffi
MK
p

ffi a, can be interpreted as the
limit value where the macro and micro length scales (see for
example [33]) merge to each other. This is something simi-
lar to what previously reported by Hooman and Gurgenci
[5] for flow through a parallel plate porous channel.
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The data presented in Tables 1–4 are a sample of the
data gathered for preparing the figures. Each table shows
the dimensionless bulk temperature and the local Nusselt
number for the two parts of our combined problem versus
�x. The error in these data is generally due to the truncation
error although a larger error is expected at very small �x val-
ues. A relatively large number of basis functions are used in
order to reduce the errors; especially, for small values of �x
similar to [18]. The data for hb;w and NuD,w behave similar
to those in [18], as expected. Also, the effect of the com-
bined Nusselt numbers approaches available data for
NuD,w and NuD,s as x̂! 0 and as x̂!1, respectively.

5. Conclusion

The Extended Weighted Residuals Method (EWRM) is
applied to investigate a thermally developing Brinkman–
Brinkman forced convection problem through a duct of
rectangular cross-section occupied by a fluid-saturated por-
ous medium. This problem is decomposed into two differ-
ent ones with different physical interpretation. For one of
these two problems, as well as the combined one, it is found
that MDa = 0.1 is a threshold value. For the combined
problem, it is observed that increasing MDa and b/a, as
well as decreasing Br will increase the thermal development
length. Moreover, the fully developed Nusselt number with
non-zero Br is found to be higher than the case when there
is no dissipation, regardless of the sign or value of Br. For
the fully developed Nusselt number, which is independent
of Br, it is observed that as b/a decreases the difference
between the Nusselt numbers for the clear fluid and that
of the slug flow also decreases. Besides, it was concluded
that the jump in NuD plots for the case of negative Br

happens at some longitudinal locations, which is nearly
independent of the duct geometry but dependent on the
MDa value.
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